案例:糖尿病患醫療品質
::p_load(caTools, ggplot2, dplyr)
pacman= read.csv("data/quality.csv") # Read in dataset
D set.seed(88)
= sample.split(D$PoorCare, SplitRatio = 0.75) # split vector
split = subset(D, split == TRUE)
TR = subset(D, split == FALSE)
TS = glm(PoorCare ~ OfficeVisits + Narcotics, TR, family=binomial)
glm1 summary(glm1)
預測機率 Predicted Probability (Training)
par(cex=0.8)
= predict(glm1, type="response")
pred hist(pred)
abline(v=0.5, col='red')
混淆矩陣 Confusion Matrix (Training)
= table(Acture=TR$PoorCare, Predict=pred > 0.5)
cmx cmx
Predict
Acture FALSE TRUE
0 70 4
1 15 10
模型準確性指標 Accuracy Metrices (Training)
= function(x, k=3) c(
AccuracyMetrices accuracy = sum(diag(x))/sum(x), # 正確性
sensitivity = as.numeric(x[2,2]/rowSums(x)[2]), # 敏感性
specificity = as.numeric(x[1,1]/rowSums(x)[1]) # 明確性
%>% round(k)
) AccuracyMetrices(cmx)
accuracy sensitivity specificity
0.808 0.400 0.946
預測機率 Predicted Probability (Testing)
par(cex=0.8)
= predict(glm1, newdata=TS, type="response")
pred2 hist(pred2, 10)
abline(v=0.5, col='red')
混淆矩陣 Confusion Matrix (Testing)
= table(Acture=TS$PoorCare, Predict=pred2 > 0.5)
cmx2 cmx2
Predict
Acture FALSE TRUE
0 23 1
1 5 3
比較模型準確性指標 Accuracy Matrices (Testing)
sapply(list(Train=cmx, Test=cmx2), AccuracyMetrices)
Train Test
accuracy 0.808 0.812
sensitivity 0.400 0.375
specificity 0.946 0.958
分類預測機率分佈 (cDPP) - Categorical Dist. of Predicted Prob. (Train)
data.frame(y=factor(TR$PoorCare), pred=pred) %>%
ggplot(aes(x=pred, fill=y)) +
geom_histogram(bins=20, col='white', position="stack", alpha=0.5) +
ggtitle("Distribution of Predicted Probability (DPP,Train)") +
xlab("predicted probability")
分類預測機率分佈 (cDPP) - Categorical Dist. of Predicted Prob. (Test)
#
#
ROC - Receiver Operation Curve
par(mfrow=c(1,2), cex=0.8)
= colAUC(pred, y=TR$PoorCare, plotROC=T)
trAUC = colAUC(pred2, y=TS$PoorCare, plotROC=T) tsAUC
AUC - Area Under Curve
c(trAUC, tsAUC)
[1] 0.77459 0.79948
🗿 練習:
使用TR$MemberID
以外的所有欄位,建立一個邏輯式回歸模型來預測PoorCare
,並:
【A】
分別畫出Training
和Testing
的DPP
【B】
分別畫出Training
和Testing
的ROC
【C】
分別算出Training
和Testing
的ACC
、SENS
和SPEC
【D】
分別算出Training
和Testing
的AUC
【E】 跟用兩個預測變數的模型相比,這一個模型有比較準嗎?
【F】
為什麼它比較準(或比較不準)呢?