👉 R:主要運算符號
■ 剛開始的時候,R的首要功能就是做向量(vector)運算
■ 大多數R的運算符號和功能函數都主要都是對向量做計算
■
數學運算符號和功能函數運算之後會產生數值向量
🌻 Bi-Operant Math Operations act Element-wise
c(1, 2, 3, 4) * c(1, 10, 100, 1000)[1] 1 20 300 4000
🌻 When the lengths of the vectors are different …
c(100, 200, 300, 400) / 10[1] 10 20 30 40
The shorter vector are repeated silently
c(100, 200, 300, 400) / c(10, 20)[1] 10 10 30 20
There is a warning when …
c(10,20,30,40,50,60,70,80) + c(1,2,3)Warning in c(10, 20, 30, 40, 50, 60, 70, 80) + c(1, 2, 3): longer object length is not a
multiple of shorter object length
[1] 11 22 33 41 52 63 71 82
Logical Operations do comparisons and produce
logical vectors
■
條件運算符號和功能函數運算之後會產生邏輯向量
They compare numerics, strings, factors, Date, …
c(0.1, 0.2, 0.3, 0.4) > c(0, 1, 2, 3)[1] TRUE FALSE FALSE FALSE
shorten vectors are also repeated
c(100, 200, 300, 400) > 250[1] FALSE FALSE TRUE TRUE
❓ what happen if I do …
c(200, 300) > c(100, 200, 300, 400)🌻 Test for equivalence (==) is different from the
assignment operator (=)
c('Amy','Bob','Cindy','Danny') == 'Cindy'[1] FALSE FALSE TRUE FALSE
🌻 The Set Comparison Operator : %in%
測試向量元件是否屬與某一個集合
c('Amy','Bob','Cindy','Danny') %in% c('Danny','Cindy')[1] FALSE FALSE TRUE TRUE
The above is the same as …
c('Amy','Bob','Cindy','Danny') %in% c('Cindy','Danny')[1] FALSE FALSE TRUE TRUE
%in% is
not important 集合元件的次序是不重要的but different from …
c('Amy','Bob','Cindy','Danny') == c('Danny','Cindy')[1] FALSE FALSE FALSE FALSE
== works element wise. thus, the sequence in the right
hand side vector of is important❓ What happen if I do …
c('Amy','Bob','Cindy','Danny') == c('Danny', 'Cindy')❓ What if …
c('Amy','Bob','Cindy','Danny') %in% c('Danny', 'Cindy')🌻 2 Notations of Assignment : = 和 <-
的效果是相同的
Prob = c(0.1, 0.2, 0.3, 0.4)
Value <- c(120, 100, -50, -60)
Prob * Value[1] 12 20 -15 -24
🌻 Assignment (=) is different from Test for Eq.
(==), 但這兩個運算符號的效果完全不一樣
c(0.1, 0.2, 0.3, 0.4) == (1:4)/10[1] TRUE TRUE TRUE TRUE
❓ What happen if you do
c(0.1, 0.2, 0.3, 0.4) == (1:4)/10Most R function take vectors as input (usually the first
argument.)
val=c(500,20,75,400)summary functions produce a single summaries/statistics
sum(val)[1] 995
mean(val)[1] 248.8
math functions produce vectors applies to every elements
log(val)[1] 6.215 2.996 4.317 5.991
sqrt(val)[1] 22.361 4.472 8.660 20.000
功能選項(arguments):In addition to the input vector, most R function take extra arguments for options
log(val, base=10)[1] 2.699 1.301 1.875 2.602
💡 Arguments of Functions:
■
To be convenient and flexible, most R functions have many arguments with
■ Place cursor on the function name and press F1
to see the online help
■ Arguments can be given either
■ Unnamed-arguments must be in
their exact position
■ Named arguments can be placed in any
order
💡 功能選項(arguments):
■
為了彈性,多數的功能都有很多個選項
■
為了方便性,多數的功能選項都有預設值
■
將滑鼠的遊標放在功能名稱上,按下F1鍵就可以看到功能的定義
■ 在功能定義中,每個選項都有一個名稱
■
假如果你根據功能定義之中各選項的次序來設定選項,就可以不用打選項名稱
(call by position)
■
假如果你指定選項名稱,選項的次序就不必和根據功能定義中的選項次序一樣
(call by name)
help(log)Default argument
log(1000)[1] 6.908
Argument by position
log(1000, 10)[1] 3
Argument by names
log(x=1000, base=10)[1] 3
Argument by names in reverse order
log(base=10, x=1000)[1] 3
Quite often we need to cascade several functions, for example
x = 10000
mean(log(sqrt(x), base=10))[1] 2
The %>% would make it easier to
apply a series of functions
sqrt(x) %>% log(10) %>% mean[1] 2