dplyr
dplyr
套件做資料框整理
載入套件與資料
# A tibble: 3,138 x 40
census_id state county region metro population men women hispanic white
<chr> <chr> <chr> <chr> <chr> <dbl> <dbl> <dbl> <dbl> <dbl>
1 1001 Alabama Autauga South Metro 55221 26745 28476 2.6 75.8
2 1003 Alabama Baldwin South Metro 195121 95314 99807 4.5 83.1
3 1005 Alabama Barbour South Nonmet~ 26932 14497 12435 4.6 46.2
4 1007 Alabama Bibb South Metro 22604 12073 10531 2.2 74.5
# i 3,134 more rows
# i 30 more variables: black <dbl>, native <dbl>, asian <dbl>, pacific <dbl>,
# citizens <dbl>, income <dbl>, income_err <dbl>, income_per_cap <dbl>,
# income_per_cap_err <dbl>, poverty <dbl>, child_poverty <dbl>,
# professional <dbl>, service <dbl>, office <dbl>, construction <dbl>,
# production <dbl>, drive <dbl>, carpool <dbl>, transit <dbl>, walk <dbl>,
# other_transp <dbl>, work_at_home <dbl>, mean_commute <dbl>, ...
[1] "spec_tbl_df" "tbl_df" "tbl" "data.frame"
tbl_df
可以看成加強版的 data_frmae
;原有資料框的操作之外,它有一些附加的功能
🌻 glimpse
str
Rows: 3,138
Columns: 40
$ census_id <chr> "1001", "1003", "1005", "1007", "1009", "1011", "10~
$ state <chr> "Alabama", "Alabama", "Alabama", "Alabama", "Alabam~
$ county <chr> "Autauga", "Baldwin", "Barbour", "Bibb", "Blount", ~
$ region <chr> "South", "South", "South", "South", "South", "South~
$ metro <chr> "Metro", "Metro", "Nonmetro", "Metro", "Metro", "No~
$ population <dbl> 55221, 195121, 26932, 22604, 57710, 10678, 20354, 1~
$ men <dbl> 26745, 95314, 14497, 12073, 28512, 5660, 9502, 5627~
$ women <dbl> 28476, 99807, 12435, 10531, 29198, 5018, 10852, 603~
$ hispanic <dbl> 2.6, 4.5, 4.6, 2.2, 8.6, 4.4, 1.2, 3.5, 0.4, 1.5, 7~
$ white <dbl> 75.8, 83.1, 46.2, 74.5, 87.9, 22.2, 53.3, 73.0, 57.~
$ black <dbl> 18.5, 9.5, 46.7, 21.4, 1.5, 70.7, 43.8, 20.3, 40.3,~
$ native <dbl> 0.4, 0.6, 0.2, 0.4, 0.3, 1.2, 0.1, 0.2, 0.2, 0.6, 0~
$ asian <dbl> 1.0, 0.7, 0.4, 0.1, 0.1, 0.2, 0.4, 0.9, 0.8, 0.3, 0~
$ pacific <dbl> 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0~
$ citizens <dbl> 40725, 147695, 20714, 17495, 42345, 8057, 15581, 88~
$ income <dbl> 51281, 50254, 32964, 38678, 45813, 31938, 32229, 41~
$ income_err <dbl> 2391, 1263, 2973, 3995, 3141, 5884, 1793, 925, 2949~
$ income_per_cap <dbl> 24974, 27317, 16824, 18431, 20532, 17580, 18390, 21~
$ income_per_cap_err <dbl> 1080, 711, 798, 1618, 708, 2055, 714, 489, 1366, 15~
$ poverty <dbl> 12.9, 13.4, 26.7, 16.8, 16.7, 24.6, 25.4, 20.5, 21.~
$ child_poverty <dbl> 18.6, 19.2, 45.3, 27.9, 27.2, 38.4, 39.2, 31.6, 37.~
$ professional <dbl> 33.2, 33.1, 26.8, 21.5, 28.5, 18.8, 27.5, 27.3, 23.~
$ service <dbl> 17.0, 17.7, 16.1, 17.9, 14.1, 15.0, 16.6, 17.7, 14.~
$ office <dbl> 24.2, 27.1, 23.1, 17.8, 23.9, 19.7, 21.9, 24.2, 26.~
$ construction <dbl> 8.6, 10.8, 10.8, 19.0, 13.5, 20.1, 10.3, 10.5, 11.5~
$ production <dbl> 17.1, 11.2, 23.1, 23.7, 19.9, 26.4, 23.7, 20.4, 24.~
$ drive <dbl> 87.5, 84.7, 83.8, 83.2, 84.9, 74.9, 84.5, 85.3, 85.~
$ carpool <dbl> 8.8, 8.8, 10.9, 13.5, 11.2, 14.9, 12.4, 9.4, 11.9, ~
$ transit <dbl> 0.1, 0.1, 0.4, 0.5, 0.4, 0.7, 0.0, 0.2, 0.2, 0.2, 0~
$ walk <dbl> 0.5, 1.0, 1.8, 0.6, 0.9, 5.0, 0.8, 1.2, 0.3, 0.6, 1~
$ other_transp <dbl> 1.3, 1.4, 1.5, 1.5, 0.4, 1.7, 0.6, 1.2, 0.4, 0.7, 1~
$ work_at_home <dbl> 1.8, 3.9, 1.6, 0.7, 2.3, 2.8, 1.7, 2.7, 2.1, 2.5, 1~
$ mean_commute <dbl> 26.5, 26.4, 24.1, 28.8, 34.9, 27.5, 24.6, 24.1, 25.~
$ employed <dbl> 23986, 85953, 8597, 8294, 22189, 3865, 7813, 47401,~
$ private_work <dbl> 73.6, 81.5, 71.8, 76.8, 82.0, 79.5, 77.4, 74.1, 85.~
$ public_work <dbl> 20.9, 12.3, 20.8, 16.1, 13.5, 15.1, 16.2, 20.8, 12.~
$ self_employed <dbl> 5.5, 5.8, 7.3, 6.7, 4.2, 5.4, 6.2, 5.0, 2.8, 7.9, 4~
$ family_work <dbl> 0.0, 0.4, 0.1, 0.4, 0.4, 0.0, 0.2, 0.1, 0.0, 0.5, 0~
$ unemployment <dbl> 7.6, 7.5, 17.6, 8.3, 7.7, 18.0, 10.9, 12.3, 8.9, 7.~
$ land_area <dbl> 594.4, 1589.8, 884.9, 622.6, 644.8, 622.8, 776.8, 6~
🌞 D
: 全美國3,138個郡(county)的統計資料
🌻 select()
# A tibble: 3,138 x 4
state county population unemployment
<chr> <chr> <dbl> <dbl>
1 Alabama Autauga 55221 7.6
2 Alabama Baldwin 195121 7.5
3 Alabama Barbour 26932 17.6
4 Alabama Bibb 22604 8.3
# i 3,134 more rows
🌻 arrange()
# A tibble: 6 x 4
state county population unemployment
<chr> <chr> <dbl> <dbl>
1 Hawaii Kalawao 85 0
2 Texas King 267 5.1
3 Nebraska McPherson 433 0.9
4 Montana Petroleum 443 6.6
5 Nebraska Arthur 448 4
6 Nebraska Loup 548 0.7
# A tibble: 6 x 4
state county population unemployment
<chr> <chr> <dbl> <dbl>
1 California Los Angeles 10038388 10
2 Illinois Cook 5236393 10.7
3 Texas Harris 4356362 7.5
4 Arizona Maricopa 4018143 7.7
5 California San Diego 3223096 8.7
6 California Orange 3116069 7.6
❓ 請列舉這幾個功能的主要異同 sort()
, order()
and arrange()
?
🌻 filter()
# A tibble: 39 x 4
state county population unemployment
<chr> <chr> <dbl> <dbl>
1 New York New York 1629507 7.5
2 New York Suffolk 1501373 6.4
3 New York Nassau 1354612 6.4
4 New York Westchester 967315 7.6
# i 35 more rows
🌻 mutate()
# A tibble: 4 x 5
state county population unemployment n_unemp
<chr> <chr> <dbl> <dbl> <dbl>
1 California Los Angeles 10038388 10 1003839.
2 Illinois Cook 5236393 10.7 560294.
3 Texas Harris 4356362 7.5 326727.
4 Arizona Maricopa 4018143 7.7 309397.
以上的這些功能用我們已經學過的R內建功能(配合索引)也都做得到,所以為什麼還要學dplyr
呢? 🤔
🌞 dplyr
的好處在於:
%>%
使用,做出比較複雜或者步驟比較多的資料裝配線🌻 count()
# A tibble: 1 x 1
n
<int>
1 3138
# A tibble: 50 x 2
state n
<chr> <int>
1 Alabama 67
2 Alaska 28
3 Arizona 15
4 Arkansas 75
# i 46 more rows
count()
可以說是加強版的 table()
# A tibble: 50 x 2
state n
<chr> <dbl>
1 California 38421464
2 Texas 26538497
3 New York 19673174
4 Florida 19645772
# i 46 more rows
With the wt
and sort
arguments, it can
population
by state
’sin a single line of code.
🌻 summarise()
# A tibble: 1 x 2
totalPop avgPop
<dbl> <dbl>
1 315845353 100652.
🌻 group_by() %>% summarise()
D1 %>% group_by(state) %>% summarise(
totalPop = sum(population),
avgPop = mean(population)
) %>%
arrange(desc(avgPop))
# A tibble: 50 x 3
state totalPop avgPop
<chr> <dbl> <dbl>
1 California 38421464 662439.
2 Massachusetts 6705586 478970.
3 Connecticut 3593222 449153.
4 Arizona 6641928 442795.
# i 46 more rows
❓ 我們之前有學過用 tapply()做分群運算,跟相比較
group_by() %>% summarise()`有甚麼好處呢?
跟 tapply()
一樣,我們也可以一次 group_by
很多個分群變數
D %>% group_by(state, metro) %>% summarise(
totalPop = sum(population),
avgPop = mean(population)
) %>%
arrange(desc(avgPop))
`summarise()` has grouped output by 'state'. You can override using the
`.groups` argument.
# A tibble: 97 x 4
# Groups: state [50]
state metro totalPop avgPop
<chr> <chr> <dbl> <dbl>
1 California Metro 37587429 1015876.
2 Arizona Metro 6295145 786893.
3 Nevada Metro 2529002 632250.
4 Massachusetts Metro 6606838 600622.
# i 93 more rows
🌷 但是 …
summarise()
只會自動去除.groups="drop"
去除掉🌻 top_n(x, n, wt)
top-n
rows by wt
from x
# A tibble: 3 x 4
state county population unemployment
<chr> <chr> <dbl> <dbl>
1 California Los Angeles 10038388 10
2 Illinois Cook 5236393 10.7
3 Texas Harris 4356362 7.5
# select from each `state` the three rows that has the largest populations
group_by(D1, state) %>% top_n(3, population) %>% head(9)
# A tibble: 9 x 4
# Groups: state [3]
state county population unemployment
<chr> <chr> <dbl> <dbl>
1 Alabama Jefferson 659026 9.1
2 Alabama Madison 346438 8.5
3 Alabama Mobile 414251 9.8
4 Alaska Anchorage Municipality 299107 6.7
5 Alaska Fairbanks North Star Borough 99705 7.9
6 Alaska Matanuska-Susitna Borough 96178 9.8
7 Arizona Maricopa 4018143 7.7
8 Arizona Pima 998537 10
9 Arizona Pinal 389772 10.6
❓ 上面兩段程式的差別在哪裡呢?
select()
可以選擇一個
# A tibble: 3,138 x 8
state county drive carpool transit walk other_transp work_at_home
<chr> <chr> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>
1 Alabama Autauga 87.5 8.8 0.1 0.5 1.3 1.8
2 Alabama Baldwin 84.7 8.8 0.1 1 1.4 3.9
3 Alabama Barbour 83.8 10.9 0.4 1.8 1.5 1.6
4 Alabama Bibb 83.2 13.5 0.5 0.6 1.5 0.7
# i 3,134 more rows
也可以用字串比對做選擇,如 starts_with
, ends_with
or contains
# A tibble: 3,138 x 6
state county work_at_home private_work public_work family_work
<chr> <chr> <dbl> <dbl> <dbl> <dbl>
1 Alabama Autauga 1.8 73.6 20.9 0
2 Alabama Baldwin 3.9 81.5 12.3 0.4
3 Alabama Barbour 1.6 71.8 20.8 0.1
4 Alabama Bibb 0.7 76.8 16.1 0.4
# i 3,134 more rows
也可以刪去某些欄位
[1] 36
names()
列出所有欄位名稱
[1] "state" "county" "population" "unemployment"
🌻 rename()
# A tibble: 3 x 4
state county population unemp
<chr> <chr> <dbl> <dbl>
1 Alabama Autauga 55221 7.6
2 Alabama Baldwin 195121 7.5
3 Alabama Barbour 26932 17.6
select()
可以同時對多個欄位做選擇、排序和變更名稱
# A tibble: 3 x 4
state county unemp population
<chr> <chr> <dbl> <dbl>
1 Alabama Autauga 7.6 55221
2 Alabama Baldwin 7.5 195121
3 Alabama Barbour 17.6 26932
🌻 transmute()
select()
和mutate()
的功能,可以同時做欄位選擇和定義新欄位
# A tibble: 3,138 x 4
state county pop fracM
<chr> <chr> <dbl> <dbl>
1 Alabama Autauga 55221 0.484
2 Alabama Baldwin 195121 0.488
3 Alabama Barbour 26932 0.538
4 Alabama Bibb 22604 0.534
# i 3,134 more rows