pacman::p_load(dplyr, ggplot2, readr, FactoMineR, factoextra, dendextend)


【A】批發商資料集

W = read.csv('data/wholesales.csv')
W$Channel = factor( paste0("Ch",W$Channel) )
W$Region = factor( paste0("Reg",W$Region) )
W[3:8] = lapply(W[3:8], log, base=10)
summary(W)
 Channel    Region        Fresh            Milk         Grocery     
 Ch1:298   Reg1: 77   Min.   :0.477   Min.   :1.74   Min.   :0.477  
 Ch2:142   Reg2: 47   1st Qu.:3.495   1st Qu.:3.19   1st Qu.:3.333  
           Reg3:316   Median :3.930   Median :3.56   Median :3.677  
                      Mean   :3.792   Mean   :3.53   Mean   :3.666  
                      3rd Qu.:4.229   3rd Qu.:3.86   3rd Qu.:4.028  
                      Max.   :5.050   Max.   :4.87   Max.   :4.968  
     Frozen     Detergents_Paper   Delicassen   
 Min.   :1.40   Min.   :0.477    Min.   :0.477  
 1st Qu.:2.87   1st Qu.:2.409    1st Qu.:2.611  
 Median :3.18   Median :2.912    Median :2.985  
 Mean   :3.17   Mean   :2.947    Mean   :2.895  
 3rd Qu.:3.55   3rd Qu.:3.594    3rd Qu.:3.260  
 Max.   :4.78   Max.   :4.611    Max.   :4.681  


【B】層級式集群分析(Clustering Analysis)

集群分析:將分析對象依其 相似性 分群

💡 層級式集群分析的步驟:
  ■ scale() : 標準化 Standardization
  ■ dist() : 距離矩陣
  ■ hclust() : 層級式集群分析
  ■ plot() : 畫出樹狀圖
  ■ rect.hclust() : 依據dandrogram做切割
  ■ cutree() : 產生分群向量

為了方便解釋,我們先使用兩個分群變數層級式集群分析

hc = W[,3:4] %>% scale %>% dist %>% hclust

樹狀圖的判讀與切割

plot(hc)
k=6; rect.hclust(hc, k=k, border="red")

產生分群向量

W$group = cutree(hc, k=3) %>% factor
table(W$group)

  1   2   3 
286 148   6 

將分析對象畫在分群變數空間上面

ggplot(W, aes(x=Fresh, y=Milk, col=group)) +
  geom_point(size=3, alpha=0.5)



【C】使用五個分群變數做分群

hc = W[,3:7] %>% scale %>% dist %>% hclust
plot(hc)
k = 6; rect.hclust(hc, k, border="red")

W$group = cutree(hc, k) %>% factor
hc %>% as.dendrogram %>% color_branches(k) %>% color_labels(k,col='white') %>% plot



【D】尺度縮減(降維,Dimension Reduction)

降維的方法(工具): + 主成分分析:Principle Component Analysis - PCA() + 多元尺度分析:Multi-Dimensional Scaling - cmdscale()

names(W)[3:8] = c('生鮮','奶製品','雜貨','冷凍','清潔用品','熟食')

W[,3:8] %>% PCA(graph=FALSE) %>% fviz_pca_biplot(
  col.ind=W$group,  # 
  label="var", pointshape=19, mean.point=F,
  addEllipses=T, ellipse.level=0.7,
  ellipse.type = "convex", palette="ucscgb",
  repel=T
  )



💡 學習重點:
  ■ 集群分析的基本觀念
  ■ 距離矩陣:Distance Matrix
  ■ 層級式集群分析:Hierarchical Cluster Analysis
  ■ 樹狀圖(Dendrogram)的判讀
  ■ 依據樹狀圖決定要分多少群
  ■ 集群分析與尺度縮減的綜合應用
  ■ 現代化的資料視覺化工具套件