eruptions waiting
1 3.600 79
2 1.800 54
3 3.333 74
4 2.283 62
5 4.533 85
6 2.883 55
##### draw the boarder of the plot
par(cex=0.7)
plot(0,0,xlim=c(1.5,5.25),ylim=c(0,1.1),xlab="Eruption(mins)",
ylab="PDF/CDF", main="Distribution of Eruption Time")
abline(h=1, col='lightgray', lwd=0.25, lty=2)
##### Data Rugs
# Empirical Rug PDF, 實證(數值標記)機率密度函數
rug(D)
# Empirical CDF, 實證(數值標記)累計機率密度函數
plot(ecdf(D), cex=0, verticals=T, lwd=2, col='darkgray', add=T)
##### Histogram PDF 直方圖機率密度函數
Bins = 20 # no. bins
bx = seq(min(D), max(D), length=Bins+1) # break sequence
hist(D, col="#B3FFFF7F", border="white",
freq=F, breaks=bx, add=T)
abline(h=0, col='lightgray', lwd=0.25)
# Histogram CDF
adj = (bx[2] - bx[1])/2
steps = stepfun(bx-adj, c(0, sapply(bx, function(b) mean(D <= b))))
plot(steps, cex=0, col='#33CC337F', lwd=3, lty=1, add=T)
##### Smooth Density PDF 平滑機率密度函數
Adjust = 0.5 # set bandwidth
DEN = density(D, adjust = Adjust) # create density function
lines(DEN, col='gold', lwd=3)
# Smooth Density CDF 畫出累計機率密度函數
PDF = approxfun(DEN$x, DEN$y, yleft=0, yright=0)
x = seq(1,6,0.1)
y = sapply(x, function(i) integrate(PDF, -Inf, i)$value)
lines(x, y, col='red', lwd=3, lty=2)
##### Color mark the region [x1, x2]
x1 = 3.8; x2 = 4.8
# rect(x1,-0.1,x2,1.2,col= rgb(0,1,0,alpha=0.2),border=NA)
x = seq(x1, x2, length=100)
polygon(c(x, x2, x1), c(PDF(x), 0, 0), col="#FF99003F", border=NA)
Estimating Probability with PDF
[1] 0.4755
If you ran a Tourist Helicopter Company in Yellowstone Park. It’d be important for you to predict the eruption time of the next eruption. If your business scenario could be simplify as a game in which you can bet $30 on a consecutive period of 60 seconds, and you’d win $100 if the next eruption time fall within the period you’d chosen.
Please use the density model of bandwidth=0.5
to decide …
pacman::p_load(dplyr, ggplot2)
x1 = seq(0,5,0.1)
p = sapply(x1, function(x) (integrate(PDF, x, x+1)$value))
data.frame(start=x1, stop=1+x1, p) %>% top_n(1, p)
start stop p
1 3.9 4.9 0.4766
The game rule has changed. Now you can place multiple bets of $5 on any 10-second periods (0~10, 10~20, 20~30 second etc.) Still you’d win $100 if the next eruption time fall within the periods you’d chosen.
x = seq(1,6,1/6)
cx = sapply(x, function(i) integrate(PDF, -Inf, i)$value)
df = data.frame(
start = x - 1/6, stop = x,
prob=cx -lag(cx)
) %>%
mutate(payoff = 100*prob - 5)
bets = df %>% filter(payoff > 0) %>% arrange(start)
bets
start stop prob payoff
1 1.667 1.833 0.06366 1.3664
2 1.833 2.000 0.08226 3.2261
3 2.000 2.167 0.06967 1.9671
4 3.833 4.000 0.05836 0.8356
5 4.000 4.167 0.07652 2.6524
6 4.167 4.333 0.08932 3.9324
7 4.333 4.500 0.09576 4.5763
8 4.500 4.667 0.08938 3.9375
9 4.667 4.833 0.06844 1.8437
[1] 9
[1] 24.34
Let’s define Expected ROI
as the ratio of the expected return versus the amount of investment (the sum of your betting money) …
df = df %>% arrange(desc(payoff)) %>% mutate(
n_bets = row_number(),
c_invest = n_bets * 5,
c_payoff = cumsum(payoff),
c_ROI = c_payoff/c_invest
) %>% round(3)
head(df,20) %>% round(3)
start stop prob payoff n_bets c_invest c_payoff c_ROI
1 4.333 4.500 0.096 4.576 1 5 4.576 0.915
2 4.500 4.667 0.089 3.938 2 10 8.514 0.851
3 4.167 4.333 0.089 3.932 3 15 12.446 0.830
4 1.833 2.000 0.082 3.226 4 20 15.672 0.784
5 4.000 4.167 0.077 2.652 5 25 18.325 0.733
6 2.000 2.167 0.070 1.967 6 30 20.292 0.676
7 4.667 4.833 0.068 1.844 7 35 22.135 0.632
8 1.667 1.833 0.064 1.366 8 40 23.502 0.588
9 3.833 4.000 0.058 0.836 9 45 24.338 0.541
10 2.167 2.333 0.049 -0.095 10 50 24.242 0.485
11 4.833 5.000 0.041 -0.870 11 55 23.372 0.425
12 3.667 3.833 0.040 -1.005 12 60 22.367 0.373
13 2.333 2.500 0.030 -2.043 13 65 20.324 0.313
14 3.500 3.667 0.027 -2.290 14 70 18.034 0.258
15 1.500 1.667 0.027 -2.301 15 75 15.733 0.210
16 3.333 3.500 0.018 -3.183 16 80 12.550 0.157
17 5.000 5.167 0.018 -3.195 17 85 9.355 0.110
18 2.500 2.667 0.014 -3.557 18 90 5.799 0.064
19 3.167 3.333 0.010 -3.972 19 95 1.827 0.019
20 2.667 2.833 0.008 -4.213 20 100 -2.386 -0.024
ggplot(df[1:20,], aes(c_ROI, c_payoff, color=c_invest)) +
geom_point(size=3) +
geom_text(aes(label=n_bets), color='black', nudge_y=0.6, size=2.5) +
scale_color_gradientn(colors=c('seagreen','gold','gold','orange','tomato','red')) +
labs(title="Strategy Space",color="Investment",y="Exp.Payoff",x="Exp.ROI")
🍭 Strategy Space:
■ Every point is a
■ Each dimension is a
■ The ideas of
🍭 Tradeoff and Constraints:
■ If there’s no constraints, what is the optimal strategy?
■ What if you have a capital limitation at c_invest < 40
?
■ What if you have another investment opportunity with ROI = 62.5%
?