

R: Statistical Programming Methods R:程式、機率與統計

Logistic Regression

Introduction

- Previous section uses linear regression to examine and predict the outcome of continuous variables.
- What if data is binary? (e.g., Yes/No; A/B)
- What we are interested in? (what do we want to predict?)
- *p*: the probability of getting 1 given some variable(s)

Can we use linear regression?

- NO.
- If we used $p = \beta_0 + \beta_1 X_1$, the probability p may be negative or higher than one (both are impossible!)
- The probabilities need to fall between **0** and **1**.

Logit Function

- Converting using logistic response / inverse logit function
- $p = \frac{1}{1 + e^{-(\beta_0 + \beta_1 X_1)}}$ (ensuring that p stays between 0 and 1)
- $Odds(y=1) = \frac{p}{1-p}$ (and $p = \frac{Odds}{1+Odds}$)
- $Odds(y = 1) = e^{(\beta_0 + \beta_1 X_1)}$
- $\log(Odds(y=1)) = \beta_0 + \beta_1 X_1$

Logistic Function

- We need a function that outputs a number between 0 and 1.
- We use the logistic function instead:

$$P(Y) = \frac{e^{\beta 0 + \beta 1 X 1}}{1 + e^{\beta_0 + \beta_1 X_1}}$$

Example – Heart Disease Data

- sex: male or female(Nominal, male=1, female=0)
- Age: Age of the patient
- Current Smoker: whether or not the patient is a current smoker (Nominal)
- Cigs Per Day: the number of cigarettes that the person smoked on average in one day
- BP Meds: whether or not the patient was on blood pressure medication (Nominal)
- Prevalent Stroke: whether or not the patient had previously had a stroke (Nominal)
- Prevalent Hyp: whether or not the patient was hypertensive (Nominal)
- Diabetes: whether or not the patient had diabetes (Nominal)
- Tot Chol: total cholesterol level (Continuous)
 - Sys BP: systolic blood pressure (Continuous)
- Dia BP: diastolic blood pressure (Continuous)
- BMI: Body Mass Index (Continuous)
- Heart Rate: heart rate (Continuous In medical research, variables such as heart rate though in fact discrete, yet are considered continuous because of large number of possible values.
- Glucose: glucose level (Continuous)
- 10 year risk of coronary heart disease CHD (binary: "1", means "Yes", "0" means "No")

 $\log(Odds(y=1)) = \beta_0 + \beta_1 X_1$

Deviance Residuals:

Min	10	Median	3Q	Max
-1.5748	-0.6134	-0.4393	-0.2916	2.8302

Coefficients:

	Estimate	Std. Error	z value	Pr(> z)	
(Intercept)	-9.236511	0.573108	-16.117	< 2e-16	***
male	0.457013	0.099676	4.585	4.54e-06	***
age	0.079565	0.005865	13.565	< 2e-16	***
currentSmoker	0.049558	0.146075	0.339	0.734410	
cigsPerDay	0.020175	0.005769	3.497	0.000471	***
totChol	0.002391	0.001032	2.318	0.020470	*
diaBP	0.022659	0.003948	5.739	9.52e-09	***
BMI	0.011932	0.011720	1.018	0.308621	
heartRate	0.002085	0.003865	0.539	0.589612	
Signif. codes:	0 '***'	0.001 '**'	0.01 '*'	0.05 '.'	0.1

(Dispersion parameter for binomial family taken to be 1)

Null deviance: 3503.5 on 4139 degrees of freedom Residual deviance: 3161.7 on 4131 degrees of freedom (因為不存在, 98 個觀察量被删除了) AIC: 3179.7 • $e^{0.079} = 1.082$,

- For every year older, the odds of getting heart disease is 1.082 higher.
- The probability of getting heart disease than NOT getting heart disease

Number of Fisher Scoring iterations: 5

How good is the model?

- Independence of variables and multicollinearity assumptions still apply
- Use deviance and AIC to measure the goodness-of-fit (Smaller is better!)
 - Deviance (模型偏差)
 - AIC (Akaike's Information Criterion)
- Use prediction to see if the model is good or not

Prediction – Confusion Matrix

#Separate the data into 80% training and 20% testing train = sample(1:nrow(df), nrow(df)*0.8) training_df = df[train,] testing_df = df[-train,]

train_heart <- glm(TenYearCHD~male+age+currentSmoker+</pre>

cigsPerDay+totChol+diaBP+BMI+heartRate, data=training_df, family="binomial")

Prediction – Confusion Matrix

predict_heart <- predict(train_heart, newdata=testing_df,
type="response")
library(regclass)</pre>

confusion_matrix(train_heart, testing_df)

Predicted 0 Predicted 1 Total

##	Actual	0	680	3	683
##	Actual	1	134	6	140
##	Total		814	9	823

	Predicted 0	Predicted 1
Actual 0	680	3
Actual 1	134	6

Accuracy: $\frac{680+6}{680+3+134+6} = 82.25\%$, Misclassification: 1 - 0.8225 = 17.75%

Prediction – Confusion Matrix

- Precision (精準度)
 - the accuracy of a predicted positive outcome
 - 預測為1 · 也真的為1
 - $\frac{\text{TP}}{\text{TP+FP}} = \frac{6}{3+6} = 67\%$
 - Type 1 errors

- Recall (召回率)
 - the strength of the model to predict a positive outcome
 - 實際為1,預測也為1

•
$$\frac{\text{TP}}{\text{TP+FN}} = \frac{6}{6+134} = 4.29\%$$

• Type 2 error

	Predicted 0	Predicted 1
Actual 0	680 (TN)	3 (FP)
Actual 1	134 (FN)	6 (TP)

F1 Score

- As always increasing type I errors will decrease type II and decreasing type I will increase type II.
- Harmonic mean between precision and recall
- $\frac{2(TP)}{2(TP)+FP+FN} = \frac{2(6)}{2(6)+3+134} = 0.08$
- Numbers closer to one show good precision AND recall

```
Here and the second sec
```

```
train2_heart <- glm(TenYearCHD~BMI, data=training_df,
family="binomial")
predict2_heart <- predict(train2_heart, newdata=testing_df,
type="response")
```

testing_df\$predict1 <- predict_heart
testing df\$predict2 <- predict2 heart</pre>

library(pROC)

- rocobj1 <- roc(testing_df\$TenYearCHD, testing_df\$predict1)</pre>
- ## Setting levels: control = 0, case = 1
- ## Setting direction: controls < cases</pre>
- rocobj2 <- roc(testing_df\$TenYearCHD, testing_df\$predict2)</pre>
- ## Setting levels: control = 0, case = 1
- ## Setting direction: controls < cases</pre>
- ggroc(list(call_roc_name_1 = rocobj1, call_roc_name_2 =
 rocobj2))

山大學