

R: Statistical Programming Methods R:程式、機率與統計

Significance Testing (1)

A/B Testing

- An A/B test is an experiment with two groups to establish which of two treatments, products, procedures is better or superior
- Example:
 - Testing two therapies to determine which suppresses cancer more effectively
 - Testing two prices to determine which yields more net profit
- Treatment group v.s. control group

Hypothesis Tests/ Significance Tests

- To learn whether random chance might be responsible for an observed effect.
- 區分觀測到的差異是來自於抽樣誤差還是母體本身的差異 (Misinterpreting Randomness)
- The Null Hypothesis (虛無假說)
 - Baseline assumption that the treatments are equivalent, and any difference between the groups is due to chance
- Alternative Hypothesis (對立假設)
 - Counterpoint to the null (what you hope to prove)

HARD WITESTITY COLUMN

Two-tailed and One-tailed Tests -1

- When there is a direction, the alternative will use '>' or '<'
- When there is no direction, use \neq (no equal)
- For example, if unsure as to whether Cambridge or Oxford graduates get paid more, following hypothesis will be used:
- H0: μ1 = μ2
- H1: μ1 ≠ μ2

Two-tailed and One-tailed Tests -2

Shaded areas represents significance (reject null hypothesis).

Parametric Assumptions - Normality

Skewness 偏度

 whether the data is skewed to larger or smaller values, and kurtosis indicates the propensity of the data to have extreme values

Kurtosis峰度

 the propensity of the data to have extreme values

Parametric Assumptions -Homogeneity of variance

- the variance of the two groups is equal
- Levene's test
 - $H_0: \sigma_i^2 = \sigma_j^2$
 - $H_1: \sigma_i^2 \neq \sigma_j^2$

T-test

One Sample T-test

• A manager claims that attendance is higher than 40 hours a week. He gathers data from 25 employees and finds that the average hours spent are 42 with a sample standard deviation of 5. Using a 95% confidence level, did the analyst find enough evidence to support her claim?

Hypothesis Testing

- Step 1 Write down the hypotheses
 - H0: μ = 40
 - H1: μ > 40
- Step 2 Calculate the standard error
 - SE $= \frac{S}{\sqrt{n}} = \frac{5}{\sqrt{25}} = 1$
- Step 3 Find the t-value using the standard error as a replacement for σ in the formula:
 t = ^{42 -40}/₁ = 2
- Step 4 Find t_a for 95% confidence: $t_a = 1.71$ [note that the hypotheses have a direction. H1 focuses on if μ is greater than 40, not different to 40]
- If t > t_a , then we found enough evidence to support the analyst's claim (H1) and therefore reject the null hypothesis (H0). Otherwise we fail to reject the null hypothesis.

One-sample T-test

```
#one-sample t test
set.seed(1234)
df <- c(rnorm(500, mean=140, sd=0.01)) #randon draw from normal distribution
t.test(df, mu=140)
##
    One Sample t-test
##
##
## data: df
## t = 0.039734, df = 499, p-value = 0.9683
                                                  Can NOT reject null Hypothesis: H0=140
## alternative hypothesis: true mean is not equal to 140
## 95 percent confidence interval:
   139.9991 140.0009
##
## sample estimates:
## mean of x
##
         140
```


One-sample T-test

```
df.w <- women #data inside R
t.test(df.w$height, mu=63.7) #test if the average height is equal to 63.7 inches
##
## One Sample t-test
##
## data: df.w$height
## t = 1.1258, df = 14, p-value = 0.2792
## alternative hypothesis: true mean is not equal to 63.7
## 95 percent confidence interval:
   62.52341 67.47659
##
## sample estimates:
                                                        What will be the result?
## mean of x
# #
         65
```

Two sample T-test -1

• Which group sleep longer?

Independent Samples

- Advantages:
 - Easier to obtain data with independent samples
- Disadvantages
 - Less control of random variability from each group.
 - Less statistical power (chance to find an effect when one exists). Therefore, larger sample sizes are needed in order to find an effect

Two-sample T-test (Independent)

```
#two-sample t test (independent)
sample1 <- c(rnorm(100, mean=140, sd=6))</pre>
sample2 <- c(rnorm(100, mean=150, sd=6))</pre>
t.test(sample1, sample2, var.equal = TRUE)
##
##
   Two Sample t-test
##
## data: sample1 and sample2
## t = -13.129, df = 198, p-value < 2.2e-16
                                                  The means of two samples are statistically different.
## alternative hypothesis: true difference in means is not equal to 0
## 95 percent confidence interval:
## -11.840276 -8.747907
## sample estimates:
## mean of x mean of y
##
   139.1787 149.4728
```

Two sample T-test -2

• Do they sleep longer taking medicine?

T

Paired Samples

- Advantages:
 - More statistical power (increases chance of finding an effect when one exists)
 - Less sample size requirements
- Disadvantages
 - When working with participants it may mean less people, but also means twice the effort.
 - Parametric assumptions are harder to understand

Two-sample T-test (Paired)

```
#two-sample t test (paired)
sample3 <- c(rnorm(100, mean=50, sd=8))</pre>
sample4 <- c(rnorm(100, mean=40, sd=8))</pre>
t.test(sample3, sample4, paired=TRUE)
##
##
   Paired t-test
##
## data: sample3 and sample4
## t = 8.4359, df = 99, p-value = 2.77e-13
## alternative hypothesis: true mean difference is not equal to 0
## 95 percent confidence interval:
     7.531866 12.164748
##
## sample estimates:
## mean difference
##
   9.848307
```